CNTs are much smaller than the width of a human hair and naturally form "forests" when they are created in large numbers. These forests, held together by a nanoscale adhesive force known as the van der Waals force, are categorized based on their rigidity or how they are aligned. For example, if CNTs are dense and well aligned, the material tends to be more rigid and can be useful for electrical and mechanical applications. If CNTs are disorganized, they tend to be softer and have entirely different sets of properties.
"Scientists are still learning how carbon nanotube arrays form," said Matt Maschmann, assistant professor of mechanical and aerospace engineering in the College of Engineering at MU. "As they grow in relatively dense populations, mechanical forces combine them into vertically oriented assemblies known as forests or arrays. The complex structures they form help dictate the properties the CNT forests possess. We're working to identify the mechanisms behind how those forests form, how to control their formation and thus dictate future uses for CNTs."
Currently, most models that examine CNT forests analyze what happens when you compress them or test their thermal or conductivity properties after they've formed. However, these models do not take into account the process by which that particular forest was created and struggle to capture realistic CNT forest structure.
No comments:
Post a Comment