Tuesday, December 9, 2014

Nanotubes may restore sight to blind retinas

Retinal degeneration is one of the most worrisome dangers in the aging process. Now researchers have made an important technological breakthrough towards a prosthetic retina that could help alleviate conditions that result from problems with this vital part of the eye.

New progress towards a prosthetic retina could help alleviate conditions that result from problems with this vital part of the eye. An encouraging new study published in Nano Letters describes a revolutionary novel device, tested on animal-derived retinal models, that has the potential to treat a number of eye diseases. The proof-of-concept artificial retina was developed by an international team led by Prof. Yael Hanein of Tel Aviv University's School of Electrical Engineering and head of TAU's Center for Nanoscience and Nanotechnology and including researchers from TAU, the Hebrew University of Jerusalem, and Newcastle University.
"Compared to the technologies tested in the past, this new device is more efficient, more flexible, and can stimulate neurons more effectively," said Prof. Hanein. "The new prosthetic is compact, unlike previous designs that used wires or metals while attempting to sense light. Additionally, the new material is capable of higher spatial resolution, whereas older designs struggled in this area."
A natural shape
The researchers combined semiconductor nanorods and carbon nanotubes to create a wireless, light-sensitive, flexible film that could potentially replace a damaged retina. The researchers tested the new device with chick retinas which were not yet light sensitive to prove that the artificial retina is able to induce neuronal activity in response to light.
Patients with age-related macular degeneration (AMD), which usually affects people age 60 or older who have damage to a specific part of the retina, will stand to benefit from the nanotube device if it is proved compatible in animals over the long term.
According to TAU doctoral student and research team member Dr. Lilach Bareket, there are already medical devices that attempt to treat visual impairment by sending sensory signals to the brain. While scientists are trying different approaches to develop an implant that can "see" light and send visual signals to a person's brain, to counter the effects of AMD and related vision disorders, many of these approaches require the use of metallic parts and cumbersome wiring or result in low resolution images. The researchers set out to make a more compact device.

No comments:

Post a Comment